设为首页 | 加入收藏
咨询电话:19930749948
详细>>联系我们
  • 公司名称:河北致远废旧医疗设备回收公司
  • 联 系 人:马女士
  • 联系电话:19930749948
  • 公司网站:www.hecigongzhen.com
  • 公司地址:河北省藁城市良村开发区
  • 公司主营:核磁共振回收、废旧医疗设备回收
您的当前位置:网站首页 >> 核磁共振回收资讯 >> 正文

核磁共振的技术发展

发布日期:2013年4月9日 关注度:2374
  西多·拉比,一个也许我们不太熟悉的名字。正是这位伟大的物理学家于1930年发现了磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。由于这项研究,拉比于...

         西多·拉比,一个也许我们不太熟悉的名字。正是这位伟大的物理学家于1930年发现了磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。这也是人类关于原子核与磁场以及外加射频场相互作用的最早认识。

 

    1946年两位美国科学家布洛赫和珀塞尔发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。为此他们两人获得了1952年度诺贝尔物理学奖。

 

    1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫宣布,他们发现了核磁共振NMR。两人因此获得了1952年诺贝尔奖。核磁共振是原子核的磁矩在恒定磁场和高频磁场(处在无线电波波段)同时作用下,当满足一定条件时,会产生共振吸收现象。核磁共振很快成为一种探索、研究物质微观结构和性质的高新技术。目前,核磁共振已在物理、化学、材料科学、生命科学和医学等领域中得到了广泛应用。

 

    原子核由质子和中子组成,它们均存在固有磁矩。可通俗的理解为它们在磁场中的行为就像一根根小磁针。原子核在外加磁场作用下,核磁矩与磁场相互作用导致能级分裂,能级差与外加磁场强度成正比。如果再同时加一个与能级间隔相应的交变电磁场,就可以引起原子核的能级跃迁,产生核磁共振。核磁共振回收认为,它的基本原理与原子的共振吸收现象类似。

 

    人们在发现核磁共振现象之后很快就产生了实际用途,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到13C谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。

 

    最早的核磁共振成像实验是由1973年劳特伯发表的,并立刻引起了广泛重视,短短10年间就进入了临床应用阶段。作用在样品上有一稳定磁场和一个交变电磁场,去掉电磁场后,处在激发态的核可以跃迁到低能级,辐射出电磁波,同时可以在线圈中感应出电压信号,称为核磁共振信号。人体组织中由于存在大量水和碳氢化合物而含有大量的氢核,一般用氢核得到的信号比其他核大1000倍以上。正常组织与病变组织的电压信号不同,结合CT技术,即电子计算机断层扫描技术,可以得到人体组织的任意断面图像,尤其对软组织的病变诊断,更显示了它的优点,而且对病变部位非常敏感,图像也很清晰。

 

    早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及核自旋等,后来广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。对于孤立的氢原子核(也就是质子),当磁场为1.4T时,共振频率为59.6MHz,相应的电磁波为波长5米的无线电波。但在化合物分子中,这个共振频率还与氢核所处的化学环境有关,处在不同化学环境中的氢核有不同的共振频率,称为化学位移。这是由核外电子云对磁场的屏蔽作用、诱导效应、共厄效应等原因引起的。同时由于分子间各原子的相互作用,还会产生自旋-耦合裂分。利用化学位移与裂分数目,就可以推测化合物尤其是有机物的分子结构。这就是核磁共振的波谱分析。20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使C13谱的应用也日益增多。用核磁共振法进行材料成分和结构分析有精度高、对样品限制少、不破坏样品等优点。

 

    核磁共振成像研究中,一个前沿课题是对人脑的功能和高级思维活动进行研究的功能性核磁共振成像。人们对大脑组织已经很了解,但对大脑如何工作以及为何有如此高级的功能却知之甚少。美国贝尔实验室于1988年开始了这方面的研究,美国政府还将20世纪90年代确定为“脑的十年”。用核磁共振技术可以直接对生物活体进行观测,而且被测对象意识清醒,还具有无辐射损伤、成像速度快、时空分辨率高(可分别达到100μm和几十ms)、可检测多种核素、化学位移有选择性等优点。美国威斯康星医院已拍摄了数千张人脑工作时的实况图像,有望在不久的将来揭开人脑工作的奥秘。

 

    若将核磁共振的频率变数增加到两个或多个,可以实现二维或多维核磁共振,从而获得比一维核磁共振更多的信息。目前核磁共振成像应用仅限于氢核,但从实际应用的需要,还要求可以对其他一些核如:C13、N14、P31、S33、Na23、I127等进行核磁共振成像。C13已经进入实用阶段,但仍需要进一步扩大和深入。核磁共振与其他物理效应如穆斯堡尔效应(γ射线的无反冲共振吸收效应)、电子自旋共振等的结合可以获得更多有价值的信息,无论在理论上还是在实际应用中都有重要意义。核磁共振拥有广泛的应用前景,伴随着脉冲傅里叶技术已经取得了一次突破,使C13谱进入应用阶段,有理由相信,其它核的谱图进入应用阶段应为期不远。

 

上一篇:什么疾病可以使用核磁共振来检查?
下一篇:核磁共振的科学原理是什么呢?
相关标签:核磁共振 原子核